MICROWAVE PHOTONIC INTERFERENCE CANCELLATION: RF ANALYSIS, III-V AND SILICON INTEGRATION, DEVELOPMENT OF BALANCED AND HYBRID ARCHITECTURES ERIC CHARLES BLOW A DISSERTATION PRESENTED TO THE FACULTY OF PRINCETON UNIVERSITY IN CANDIDACY FOR THE DEGREE OF DOCTOR OF PHILOSOPHY RECOMMENDED FOR ACCEPTANCE BY THE DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING ADVISOR: PROFESSOR PAUL R. PRUCNAL JANUARY 2024 # **Contents** | | Abst | ract | iii | |---|------|-----------------------------------------------------------|------| | | List | of Tables | vii | | | List | of Figures | viii | | A | Pack | kaging Process | 1 | | | A.1 | Introduction | 1 | | | A.2 | Packaging Approach | 3 | | | A.3 | Fabrication of Glass Expander | 4 | | | A.4 | ADT Dicing Expander | 5 | | | A.5 | Silicon Photonic Integrated Circuit Die Dicing – Z-Cut | 7 | | | | A.5.1 Carrier Wafer Preparation | 8 | | | A.6 | Tresky Pick and Place (P&P) | 14 | | | | A.6.1 Direct to chip carrier (Low I/O Count): | 14 | | | | A.6.2 PIC, Expander, Chip Carrier stack (High I/O Count): | 16 | | | A.7 | Questar Automatic Wedge Wire Bonder | 19 | | | A.8 | Acknowledgements | 24 | | В | Phot | tonic Integrated Circuit Precise Aluminum Etch | 25 | | | B.1 | Introduction | | | | B.2 | Mask Layout | | | | | Lithography | 27 | | B.4 | Etching | 29 | |-----|-----------------------------------|----| | B.5 | Photoresist Strip | 32 | | B.6 | Results of Silicon Modulator Etch | 32 | # **List of Tables** | A.1 | Questar Wire bond Recipes: Expander to Chip Carrier | 21 | |-----|-----------------------------------------------------|----| | A.2 | Questar Wire bond Recipes: PIC Row 1 | 22 | | A.3 | Questar Wire bond Recipes: PIC Row 2 | 22 | | A.4 | Questar Wire bond Recipes: PIC Row 3 | 23 | | A.5 | Questar Wire bond Recipes: Static Parameters | 23 | # **List of Figures** | A. 1 | Diagram of packaging approach for silicon microwave photonic canceller | 4 | |--------------|--------------------------------------------------------------------------------------|----| | A.2 | Expander designs for fabricated 4" silica wafer | 5 | | A.3 | Diced glass expander used for photonic integrated circuit packaging | 7 | | A.4 | Lightwave Lab's 6 mm by 10 mm Photonic Integrated Circuit (PIC) sub-grouped | | | | into four sub-PICs. The 100 μm dicing lanes are indicated by alignment markers. | 8 | | A.5 | Diagram of guidelines on Si carrier wafer. Example of Si carrier wafer with etched | | | | guidelines | 9 | | A.6 | Illustration on how to place multiple samples for Z-cut and how to support a die | | | | with space Si or Glass shards | 10 | | A.7 | Placing crystalline wax shards where sample and supports are to be located | 10 | | A.8 | Diced practice sample with improved recipe and ADT dicing saw display after | | | | successful z-cut is completed | 13 | | A.9 | Previously diced samples | 13 | | A.10 | DIP carrier mounted to metal grating holder. Tape corners for added stability | 16 | | A. 11 | Pick and Place examples | 17 | | A.12 | PIC epoxied directly to DIP chip carrier | 17 | | A.13 | Glass expander being placed and epoxied to custom chip carrier. PIC being placed | | | | and epoxied to glass expander | 18 | | A.14 | Chip Carrier, Glass Expander, PIC epoxying procedure | 18 | | A.15 | Wedge wire bond parameter definitions and expected range. Source: Princeton | | |------|----------------------------------------------------------------------------------|----| | | MNFL | 21 | | A.16 | Two fully packaged photonic integrated circuits demonstrating high density elec- | | | | trical I/O. Optical I/O is not shown. | 21 | | | | | | B.1 | Windowed lithography mask over M2 short which required etching to enable proper | | | | operation of modulator | 26 | | B.2 | Mask for PIC aluminum etching | 27 | | B.3 | Interferometric effects observed within metal layers on livingstone test | 32 | | B.4 | Imaging of successful etch in varying imaging focus to highlight different chip | | | | depths | 33 | | B.5 | Experimental data confirming successful etch | 33 | # Appendix A # **Packaging Process** This appendix highlights the packaging approach, recipes, and procedures developed to interface with photonic integrated circuits within the Princeton University's Lightwave Lab from 2017 to 2023. Authors: Eric C. Blow, Bert Harrop, Simon Bilodeau, Thomas Ferreira de Lima #### A.1 Introduction Packaging, whilst often overlooked, plays a critical role in the overall performance of integrated circuits. A next-generation processor requires equally state-of-the-art interfacing or performance is unnecessarily degraded. PICs enable ultra-wide instantaneous bandwidths of 10 GHz and frequency tunability from MHz to 100 GHz. This unprecedented bandwidth performance generates a novel electrical interfacing requirement [1, 2]. Historically in the Lightwave Laboratory, RF electrical I/O on PICs were probed, while this is sufficient for low number of I/O (\leq 6; 3 sides of GSGSG RF probes) and for lab bench experiments, the technique does not support commercialization or growing chip complexities. A fully packaged solution increased functionality through interfacing with co-packaged CMOS and control electronics. Traditional wirebonding techniques can support high-speed connections up to 100 GHz. This performance is achieved by keeping wirebond lengths short and pairing the bonds with impedance-matched transmission lines, resulting in narrowband gain at the operating frequency. Wedge wire bonding can be optimized to achieve 30 GHz instantaneous bandwidth (IBW), strip wire bonding can increase IBW to 50 GHz, but beyond that requires the transition to flip-chip bonding [3, 4]. In addition to the bandwidth consideration of electrical packaging PICS, the growing complexity of neuromorphic PICs required an increase in the amount and density of electrical I/O. Immediately after demonstrations of a small PNN with 2 neurons, the size of the PNN was limited due to packaging. Electrical probing limited the electrical I/O to 48 connections (16 DC probes over 3 sides of the PIC, 1 side reserved for optical I/O). A simple approximation for electrical I/O required is shown in eqn. /refeqn:IOcount. Two connections, ground and signal, per weight and neuron bias. For an all-to-all connected PNN, the number of weights scale with the number of neurons squared, and lastly each neuron requires a bias. Therefore, probing could only support a PNN with four neurons. $$Number of I/O = 2[Weights + Neuron Bias] = 2[(Neurons^2) + Neurons].$$ (A.1) Transitioning from probing to wedge wire bonding, scales available I/O from number of 3* probe size to a function of the perimeter length and therefore enables larger networks. For an electrical pad of width $100\mu m$ and a pitch of $150\mu m$, a standard 3mm by 6mm PIC size could support 100 electrical I/O and therefore a PNN size of 6. With perimeter wire bonding, multiple rows can be implemented if they are interlaced and separated by height. We developed a three-row recipe that increased the electrical I/O count to 300 and therefore a PNN size of 11. Multiplexing signals and common grounds could increase the number of neurons by a few. However, to exceed this number requires using the entire chip surface for electrical I/O instead of simply the perimeter. The PNN complexity scales with the area of the chip, but the electrical I/O with wire bonding scales with the perimeter. The discrepancy in these scaling laws leads to inefficiencies. Therefore, to increase the size of PNNs further requires the transition to flip-chip bonding or co-integrated CMOS control. During this, the Lightwave Laboratory transitioned our packaging approach from probing PICs to a fully wire-bonded approach which supports 20 GHz RF connections, 300 of DC control I/O, and epoxied optical coupling. ## A.2 Packaging Approach (Refer to Chapter 7: Silicon MPC for a detailed example) Figure A.1 below summarizes the packaging approach for interfacing with the silicon microwave photonic canceller (MPC). The goals of the packaging approach were to have RF and DC electrical interfaces with two cancellers on-chip simultaneously. Physically secure the chip in a planar orientation while having sidewall access for optical edge coupling. Lastly, PICs require temperature control. The MPC PIC has 45 electrical DC connections for two separate cancellers, 2 RF outputs which support DC-GSG-DC probes, and 2 RF inputs which support GSGSG probes. The on-chip electrical DC pad array consists of two rows of 23 and 22 aluminum pads, $100\mu m$ wide by $200\mu m$ long, pitched $150\mu m$. The MPC PIC has 19 relevant optical edge couplers but only requires a maximum of 10 to be interfaced simultaneously. The MPC PIC is first interfaced with a custom-fabricated glass expander with an identical DC pad array to that which is on the PIC. This helps to keep the wire bonds as short as possible and parallel to one another. The expander pad array is then fanned out to a lower density single row pad array. This array is matched to a custom-made chip carrier which can be soldered to a printed circuit board. The chip carrier is then diced on one side in order to support optical edge coupling. Figure A.1: Diagram of packaging approach for silicon microwave photonic canceller ## **A.3** Fabrication of Glass Expander Author and Recipe Developer: Simon Bilodeau The fabrication of an expander chip is required to transition from the high density electrical I/O of the PIC to the lower density electrical I/O of a chip carrier. This enables higher density I/O, shorter wirebonds, and multiple rows of wirebonds. Currently, these chips are only utilized passive routing for DC connections. Although, it would be advantageous to surface mount capacitors on this packaging layer for improved RF performance. The following recipe was designed for 4" silica wafer with aluminum traces. Shown in Figure A.2 below, is an example of a glass expander design used for a microwave photonic canceller. - 1. Write the 4" or 5" chrome hard mask **negative** using a direct write lithography tool. - 2. Develop, etch chrome, and strip resist in TMAH tank. - 3. Perform a solvent clean on the wafer with acetone and isopropanol followed by an oxygen plasma clean (5 min, 500 W O2 ashing). - 4. Perform a 5000A aluminum deposition. - 5. Spin AZ1518 resist (4000 rpm, 40 seconds) followed by a 1 min soft bake at 95°C. - 6. Expose wafer with standard dose and time for AZ1518. - 7. Develop in AZ 300 MIF for 40s and inspect result under the microscope. - 8. Run a plasma descum (5 min, 200 W O2 ashing) [Recommended but optional]. - 9. Aluminum Etch Type A at 50°C for a few minutes until change is visible. This procedure is updated from the recipe presented by the authors in Thomas Ferrier de Lima's "Neuromorphic Computing with Silicon Photonics" (2022) [5]. The recipe was modified by change from an aluminum deposition of positive mask and lift-off to aluminum deposition of negative mask and aluminum etch. This transition resulted in a faster process, higher quality traces, and higher yields. Figure A.2: Expander designs for fabricated 4" silica wafer ## A.4 ADT Dicing Expander After the customized expander wafer is fabricated within MNFL Cleanroom, the glass or silicon expander wafer must be diced to remove the experiment-specific expander. This process of dicing a 4-inch wafer is standard and requires a few steps, stated below. - 1. Mount wafer with the ADT metal ring and 90 μm tape. - 2. Measure the height of the tape and confirm 90 μm . - 3. Flip mounted wafer and apply a second layer of tape to top of wafer. This is done to prevent the expanders from being scratched in the dicing process or afterwards while stored. - 4. Define the appropriate recipe for the ADT Dicing saw. - (a) Recipe: Si_Dice or Glass_Dice - 5. Adjust Recipe with the actual height of the tape using the Mitutoyo Height Gauge minus 10 microns and also define the 0 degree and 90 degree dicing index. - 6. Insert Correct Blade: - (a) 2045 Blade for silicon - (b) ADT Resin Blade for glass - 7. System Init* - 8. Calibrate blade* - 9. Calibrate Y-offset* - 10. Partial cuts plus manual alignment to dice wafer*. On the ADT Dicing, be careful using full wafer cut; There is no confirmation, and the entire wafer will cut after index definition. ^{*}Use Tool Manual for additional detailed instruction. Figure A.3: Diced glass expander used for photonic integrated circuit packaging ## A.5 Silicon Photonic Integrated Circuit Die Dicing – Z-Cut In integrated photonic prototyping, research groups will leverage multi-project wafer (MPW) runs. The foundry will offer many customers an 8-inch wafer to share, resulting in a user getting 10s of copies of a standardized sized die (commonly 3mm by 8mm). Research groups can utilize this space more effectively by further dividing the chip area into groups of experiments. The division of a single PICs into sub-PICs is highly beneficial for two reasons. Firstly, an increased copy of available chips per experiment, without further dicing of the PIC such as 32 copies of a PIC with 4 experiments would result in 8 copies per experiment. This is due to an inability to package all experiments simultaneously. Secondly, as shown in the figure below, the sub-grouping of experiments significantly increases the available chip parameter for electrical and optical I/O. Preforming such a dice on a small sample using a wafer dicing saw requires custom techniques and recipes as to not damage or dislodge the sample. The Z-cut recipe was developed to bring the dicing down in the Z direction over top of the sample. Rather than dicing from the side such as a traditional dicing saw recipe. The recipe is designed to cut with a much slower movement to reduce horizontal forces. For large samples the recipe allows for travel in the positive x-direction (right) after the initial cut is made. Figure A.4: Lightwave Lab's 6 mm by 10 mm Photonic Integrated Circuit (PIC) sub-grouped into four sub-PICs. The 100 μm dicing lanes are indicated by alignment markers. This is an updated procedure to the one developed by the authors presented in Thomas Ferrier de Lima's "Neuromorphic Computing with Silicon Photonics" (2022)[5]. ## **A.5.1** Carrier Wafer Preparation Optional: Prepare a carrier wafer with guidelines to make finding the sample using the ADT significantly easier. - 1. Take a relatively clean bulk silicon carrier wafer and use a tex wipe wet with acetone to remove any debris or previous wax from top and back. - 2. Mount the wafer with the tape and metal ring. - 3. Measure the surface of the carrier wafer and set the cutting depth of the recipe to 20 μm before the surface of the wafer. - 4. Load the carrier wafer into the ADT dicing saw and define the recipe as the standard Si dicing recipe, e.g. Si_Test . - 5. Follow the ADT manual to perform the following 20 μm dice. - 6. Avoid diving too deeply, beyond 20 μm can scribe the wafer and encourage breaking along the lattice dislocation line. - 7. Remove sample and clean excess tape residue with acetone. Figure A.5: Diagram of guidelines on Si carrier wafer (left) Example of Si carrier wafer with etched guidelines (right) #### **Sample Preparation** - 1. Take a prepared carrier wafer and acetone wipe the wafer. Fold acetone wipe to only clean with a clean side of the wipe. - 2. Roughly clean back with acetone wipe using the same technique before mounting as carrier wafer will dislodge while dicing if dirty. - 3. Heat carrier wafer at 165oF (74oC). - 4. Use razor to chisel small shards of crystalline wax from tube - 5. If Z-cutting multiple samples orient them so there is no chance of the dicing blade hitting more than one sample at a time. Figure A.6: Illustration on how to place multiple samples for Z-cut (left) and how to support a die with space Si or Glass shards (right). 6. Put one large shard where the PIC will be located, where all four support shards are located, and the corners where support shards interface with the chip. Place carrier wafer on 80°C hot plate. Mid-range melting point of 165°F (74°C). Figure A.7: Placing crystalline wax shards where sample and supports should be located (left) Image of mounted sample (right) - 7. Ensure chips are loaded onto carrier with same orientation locked into place with 3-4 sides of silicon shards, shown below. - (a) If there are edge couplers, you can avoid supporting them with a fourth shard to protect the edge couplers from mechanical damage. There is a risk tradeoff between too poorly supporting the chip or damaging the interface. - 8. Precisely clean back, 1 wipe per surface of the acetone-soaked Tex wipe to avoid dislodgement. - 9. Measure Z in different places to make sure it's flat with the Mitutoyo Height Gauge. - (a) Example of Measuring before cut: - i. Tape height = 120-180 μm - ii. Tape + Carrier height = $700-800 \mu m$ - iii. Tape + Carrier + Chip = $2500 2700 \mu m$ - iv. Cut down to $600\mu m$ ($100\mu m$ below your carrier height) - 10. Roll tape on the carrier without the wafer. - 11. Slowly apply carrier wafer to tape. - (a) Place wafer underneath, making sure there are no gaps. Start with one edge of the wafer and stick the tape gradually and gently with your thumb across the wafer, avoiding bubbles. #### **Changes to recipe:** - 1. Previously used beeswax - (a) Problem: beeswax is weaker than crystalline wax. - 2. Previously used wax shards on top of sample - (a) Problem 1: Too little wax sample is not secure, and sample can be dislodged. - (b) Problem 2: Too much wax is hard to see through and therefore hard to align. - (c) Problem 3: Too much wax causes a high wax profile which wears heavily on blade. - i. i. Previously, height was reduced by using an acetone-soaked wipe Even though successful, there is a need for further reduction. The risk of wax height is due to the 30,000 RPM saw melting the wax on top as cutting and then the wax can get onto the side of blade. #### **Z-cut Dice** - 1. Load the carrier into the ADT*. - 2. Select the appropriate blade. - (a) Blade 2045 for Silicon PICs - (b) $60 \mu m$ cut width - 3. Recipe for Z-cut: ZcutCMOS (set cut depth and wafer thickness). - 4. Change recipe to include your calculated cut depth on both cut angles - 5. Decide if you need to increase the cut distance. This may be necessary for dicing larger chips. - 6. Perform Y-offset.* - 7. Perform partial wafer alignment (skip second angle).* - 8. Partial wafer cut. Access this option via manual, cut, partial. Use animation mode. After selecting it, assuming the wafer alignment is done, proceed with next-next-finish-finish.* - 9. After the cut, the ADT tries to unload wafer. Cancel to abort and move to the next cut instead.* #### Cleaning - 1. Heat chip to 80°C and remove sample with tweezers. - 2. Slide sample into acetone bath for 60 seconds. - 3. Slide onto Tex wipes to clean with Isopropyl Alcohol (IPA). - 4. Repeat cleaning if there is still crystalline wax debris. - 5. Dry with Nitrogen Gun. *Use Tool Manual for additional detailed instruction Figure A.8: Diced practice sample with improved recipe (left) and ADT dicing saw display after successful z-cut is completed (right). Figure A.9: Previously diced samples. Only covering edges with wax increased risk of sample dislodgement from the carrier (left). Samples with too much wax on the sample caused wear to the blade and was hard to align, even after significant removal with acetone Tex wipe (right). Tresky Pick and Place (P&P) **A.6** A.6.1 Direct to chip carrier (Low I/O Count): Direct pick and place (p&P) to Chip carrier without expander chip. This technique is fast and effective for small-scale experiments with low I/O count (less than 15). The I/O count is limited in this technique because the DC pad array on-chip and the chip carrier have a mismatched pitch. Therefore, the angles generated by the wirebonds will eventually become too great and wirebonds can often short. Additionally, this is only recommended for DC connections due to increased wire bond length relative to packaging with the glass expander or a custom carrier. This increased wire bond length results in a higher inductance which would cause high attenuation if these were used for AC signal. 1. Select DIP package which matches the needs of PIC. 2. Secure DIP to grated holder with the amber cleanroom electrical tape due to the high melting temperature. 3. Vacuum metal grated holder to Tresky flip chip bonder main stage. 4. Program 28 Pick and Place (P&P) 5. Parameters (a) Force: i. Pick: 30g ii. Place: 250g (b) Time: i. Pick: 250 ms ii. Place: 250 ms iii. Scrub: 0 ms 14 iv. Del. S: 0 ms (c) Height: i. Program dynamically due to height of dip and chip (d) Puff time: disable (e) Puff offset: disable (f) Speed: i. Pick down: 1 mm/s ii. Pick up: 5 mm/s iii. Place down: 1 mm/s (as slow as possible) iv. Clearance: 40 mm/s (g) QH Place force (applies force while heating and curing epoxy) 6. Define heat profile based on silver epoxy specification sheet. - (a) Using H20E EPO-TEK Silver conductive epoxy Product No. 16014 - (b) $120^{/circ}$ C for 15 min. - (c) Make sure TEC unit is enabled or Tresky will stall out and require reboot. - 7. Define height parameters using microscope and shortcut Tresky buttons. - 8. Dry run with dummy Sample, Pick and Place with Quick Heat off to check heights and forces but not have to wait for heating cycling. - 9. Remove metal grated holder with dip package from Tresky. - 10. Apply blue tape to entire surface of dip and cut a rectangle hole approximately the same size as the chip being packaged. - 11. Mix the two-part epoxy on a glass slide and using a small cotton swab apply a thin layer over the blue tape. - 12. Remove the blue tape and left behind is the square epoxy. - 13. Remount the metal grating holder to the Tresky flip chip bonding - 14. Turn Quick Heat On and run the Pick and Place programming, aligning, and then curing the sliver epoxy. - (a) Align the sample to the DIP package with reflection of the samples. Aim for the midpoint between the nozzle and the reflection. This point is where the chip edge will meet the chip. Figure A.10: DIP carrier mounted to metal grating holder. Tape corners for added stability ## A.6.2 PIC, Expander, Chip Carrier stack (High I/O Count): **Discussion:** There is a risk trade-off between the soldering chip carrier to the PCB board before wirebonding or afterwards. My recommendation is to bond first for small I/O prototyping and to solder to first for large scale I/O. Figure A.11: Sample with silver epoxy applied (left) and sample with PIC being placed by Tresky P&P (right) Figure A.12: PIC epoxied directly to DIP chip carrier. If one was to first solder the chip carrier, there would be no risk of damaging the bonds while soldering. This process requires heat and mechanical manipulation, which could result in accidental damage to the bonds. There would also be the risk of damaging the FR4 PCB board during the curing process. Upon detailed observation, discoloration and smoking took place initially but stabilized after 15 seconds. Neither damage nor degradation of performance was observed. Figure A.13: Glass expander being placed and epoxied to custom chip carrier (left), PIC being placed and epoxied to glass expander (right). Figure A.14: Chip Carrier, Glass Expander, PIC epoxying procedure. The primary problem with soldering first on the small I/O DIP packages is twofold. Firstly, it is difficult to achieve the security and planarization required for wirebonding in a standard throughhole or pluggable standardized chip carrier package. Additionally, not only must the carrier be planar, but also the board must be. If the board is planned significantly in advance and there are mounting holds which match the Tresky and Questar mounts to stabilize the board and chip carrier, soldering first is recommended. The sample must be absolutely secure and planar or the bonding yield will be very poor (< 80%). For prototyping small I/O counts, using the metal grating and soldering afterwards is an easier and more flexible approach. For large I/O counts, plan ahead and incorporate mounting holds and solder first. ## A.7 Questar Automatic Wedge Wire Bonder Wire bonding is a tedious but critical part of the packaging procedure. The PICs, glass expanders, and chip carriers were electrically interfaced with 25 μm wedge wire bonds. The challenge within this research was two-fold. Firstly, the authors needed to achieve a high yield to successfully bond 300+ wire bonds without failure. This was due to a high number of electrical I/O and small pad sizes on the PIC which only allowed for one bonding attempt. Second, given the limited chip perimeter, the authors developed a three-row recipe to three-fold increase the amount of possible electrical I/O. There was a critical need to scale the size of the photonic neural network. The yield of the wire bonding is dependent on: - 1. Requirement: Planarization of the PIC and glass expander. - (a) Solution: the use of the Tresky for Pick and Place. - 2. Requirement: Firm mounting of sample to Questar. - (a) Solution: Design custom PCBs with drill holes matching the mounting of the Questar. - 3. Requirement: Parallel Wirebonds - (a) Solution: Design glass expanders in Princeton Cleanroom with matching pad arrays to that which are on the PIC. - 4. Requirement: Clean surfaces and quality metalization. - (a) Solution: Cleaning pads before bonding and optimized glass expander recipe (see Appendix A3) By applying these solutions, the authors developed a packaging recipe with a percent yield of more than 99%. To achieve the three rows of wire bonds for the high density photonic neural network, the authors fabricated dummy replicas of the PICs and optimized the physical parameters of the wire bonds by trial and error. The result of the recipe development is stored in memory on the Tresky and provided in the Table 1 below. Lastly, the authors determined the inclusion of a pad array "graveyard" on the glass expander was critically important. These additional free pads can be used for calibration, ensuring proper bonding operation after a failed bond, and removal of the wire bond tail caused by re-threading. #### **Sample and Equipment Preparation:** - 1. Clean pads with acetone, if possible, and/or at least IPA to remove any potential organic debris - 2. Firmly and securely mount the sample to the Questar Wire Bonder. - (a) This can be done with metal grates if a small through-hole I/O chip carrier is used. - (b) Ideally, the designer planned for wire bonding and the sample is on a custom PCB with 4 holes created which match the mounting brackets of the Questar. - i. Screw hole: 9 AWG (2.9 metric) - ii. Horizontal separation: 4 cm - iii. Vertical separation: 4.5 cm - 3. Unthread the wire from the wedge tool and calibrate for x-y position and ultrasonics, following the manual. - (a) This calibration should be done on the pad array graveyard on glass expander. - 4. Select the PIC row or expander to chip carrier recipe. - 5. Begin bonding in accordance with the equipment manual. - 6. Check pad footprint width to ensure it meets the 1.5x wire bond width which ensures appropriate levels. - (a) If too wide lower ultrasonic power, if too narrow increase ultrasonic power Figure A.15: Wedge wire bond parameter definitions and expected range. Source: Princeton MNFL Figure A.16: Two fully packaged photonic integrated circuits demonstrating high density electrical I/O. Optical I/O is not shown. Table A.1: Questar Wire bond Recipes: Expander to Chip Carrier | · Questin // in a solid literapest impuliate to elim | | | |------------------------------------------------------|--------------------------|--| | Parameter | Value for glass expander | | | Bond 1 CV Height | 35 mils | | | Bond 1 Overtravel | 1 mils | | | Bond 1 Bond Time | 60 ms | | | Bond 1 Ultrasonics | 50 power | | | Loop Reverse Height | 10 mils | | | Loop Reverse Loop | 10 mils | | | Loop Height | 35 mils | | | Bond 2 CV Height | 35 mils | | | Bond 2 Overtravel | 1 mils | | | Bond 2 Bond Time | 55 ms | | | Bond 2 Ultrasonics | 54 | | | Z up | 2.1 mils | | | Wire Feed | 2.8 mils | | | tear | 1.5 mils | | | | | | Table A.2: Questar Wire bond Recipes: PIC Row 1 | Parameter | Value for AMF | Value for IME | |---------------------|---------------|---------------| | Bond 1 CV Height | 35 mils | 35 mils | | Bond 1 Overtravel | 1 mils | 1 mils | | Bond 1 Bond Time | 50 ms | 50 ms | | Bond 1 Ultrasonics | 49 power | 50 power | | Loop Reverse Height | 10 mils | 10 mils | | Loop Reverse Loop | 10 mils | 10 mils | | Loop Height | 36 mils | 36 mils | | Bond 2 CV Height | 35 mils | 35 mils | | Bond 2 Overtravel | 1.2 mils | 1.2 mils | | Bond 2 Bond Time | 60 ms | 60 ms | | Bond 2 Ultrasonics | 55 power | 55 power | | Z up | 2.6 mils | 2.6 mils | | Wire Feed | 2.6 mils | 2.6 mils | | tear | 1.5 mils | 1.5 mils | Table A.3: Questar Wire bond Recipes: PIC Row 2 | Parameter | Value for AMF | Value for IME | |---------------------|---------------|---------------| | Bond 1 CV Height | 35 mils | 35 mils | | Bond 1 Overtravel | 1 mils | 1 mil | | Bond 1 Bond Time | 62 ms | 62 ms | | Bond 1 Ultrasonics | 49 power | 56 Power | | Loop Reverse Height | 12 mils | 12 mils | | Loop Reverse Loop | 20 mils | 20 mils | | Loop Height | 40 mils | 40 mils | | Bond 2 CV Height | 35 mils | 35 mils | | Bond 2 Overtravel | 1.2 mils | 1.2 mils | | Bond 2 Bond Time | 65 ms | 65 ms | | Bond 2 Ultrasonics | 55 power | 59 power | | Z up | 2.3 mils | 2.3 mils | | Wire Feed | 3 mils | 3.2 mils | | tear | 1.5 mils | 1.5 mils | Table A.4: Questar Wire bond Recipes: PIC Row 3 | Parameter | Value for AMF | Value for IME | |---------------------|---------------|---------------| | Bond 1 CV Height | 35 mils | 35 mils | | Bond 1 Overtravel | 1 mil | 1 mil | | Bond 1 Bond Time | 60 ms | 60 ms | | Bond 1 Ultrasonics | 49 power | 40 power | | Loop Reverse Height | 35 mils | 35 mils | | Loop Reverse Loop | 33 mils | 33 mils | | Loop Height | 58 mils | 58 mils | | Bond 2 CV Height | 35 mils | 35 mils | | Bond 2 Overtravel | 1 mil | 1 mils | | Bond 2 Bond Time | 63 ms | 63 ms | | Bond 2 Ultrasonics | 55 power | 40 power | | Z up | 2.3 mils | 2.3 mils | | Wire Feed | 3 mils | 3 mils | | tear | 1.5 mils | 1.5 mils | Table A.5: Questar Wire bond Recipes: Static Parameters | Static Parameters | Value for AMF | Value for IME | |-------------------------------|--------------------------|---------------| | | Expander to Chip Carrier | | | Bond 1 and 2 CV Height | 35 mils | 35 mils | | Bond 1 and 2 Contact Velocity | 100 mils/sec | 100 mils/sec | | Loop Stretch | 0 mils | 0 mils | | Rise to Loop | 0 mils | 0 mils | | Clamp Close | CV Height 2 | CV Height 2 | | Reset Height | 35 mils | 35 mils | ## A.8 Acknowledgements The authors of these packaging procedures would like to thank and acknowledge the Princeton MNFL cleanroom and staff. Specifically, Bert G. Harrop for his guidance and expertise in developing the recipes presented here. The authors would also like to thank Zuzanna Lewicka for authoring the packaging equipment manuals referenced within this appendix # Appendix B # **Photonic Integrated Circuit Precise** ## **Aluminum Etch** This appendix highlights the post-processing approach which was required to etch metal non-idealities within silicon photonic integrated circuits. This was required due to an unexpected short within the fully integrated microwave photonic canceller. **Author: Simon Bilodeau Editor: Eric C. Blow** ## **B.1** Introduction Assume that there is a short on your metal 2 layer in your integrated layout. One can fix that by in-house post-processing. The typical metrology (e.g. reflectometer) does not work very well with a chip that has dense features like a photonic integrated circuit (PIC), but there are visual and electrical cues. Within Chapter 7 Silicon Microwave Photonic Cancellation, the modulators on the fully integrated design were shorted due to a design error within the M2 layer of the SiEPIC PDK (since corrected). This resulted in a resistive transfer function instead of the expected diode curve. To correct this design error, required the precise etching of a $10 \mu m$ by $30 \mu m$ aluminum layer microns thick without damaging the silicon photonics which laid directly below. Figure B.1: Windowed lithography mask over M2 short which required etching to enable proper operation of modulator. ## **B.2** Mask Layout Since we want to only etch certain features, we need to define a photoresist mask over the chip. The standard Heidelberg recipe for mask making works well. Follow the Standard Operating Procedures (SOP) on the Heidelberg DWL-66+ computer. Note: - 1. Mirror at y if you are making a mask (ignore if direct write). - 2. Strip the mask of resist before using it. - 3. In addition to desired features to etch, make sure to open the mask to other features on the chip to allow for alignment. Ideally there are features at the 4 extreme corners of the chip to align to. - 4. Open up the mask around the wafer to easily find the chip with the mask aligner. 1 cm around the chip edge works well. 5. Determine where the vacuum holes on the SUSS MA6 chucks are, and make sure that the layout is offset from the center of the mask appropriately. This is only going to be an issue for very small samples. Figure B.2: Mask GDS including openings for alignment (black dashed) and openings for etching (red dashed). ## **B.3** Lithography The ideal thickness of resist to aim for depends on the amount of etching to be done and the selectivity of the etchant. Fortunately, we don't have to etch much, and the acids are gentle on the resist, so we have found that the AZ1518 recipes (for 1.9um resist thickness) to work well. A modified standard recipe with slight overetch and overdeveloping (assuming resolution is not too critical) works well. #### Recipe: - 1. Spin coating within photo-spincoat hoods - (a) (Optional) if the sample is visibly dirty, or if you need very high resolution, clean with acetone/IPA. While aggressive cleaning of substrates is always a good idea, for precious samples like taped-out PICs better outcomes usually come out of minimizing manipulations. Note: If your PIC has edge couplers or unclad features, DO NOT manipulate the chip at the sensitive edge or surface. This is valid for this step and all subsequent steps. (b) Dehydration bake of the sample, > 1 min at 110° C. Cool off on the metal plate. (c) Mount the sample onto a sample-sized chuck in one of the spin coaters. Center it as accurately as possible, checking with the pre-spin function. (d) Using a small pipette, put a few drops of AZ1518 on the sample. Cover well. (e) Run recipe 1 (4000 RPM, 40s). Note: if the PIC has edge couplers, **DO NOT** perform the usual edge bead removal with a q-tip since this may damage the couplers. (f) Bake at 95° for 1 min. 2. Exposure (SUSS M6) (a) Load sample-appropriate chuck and mask-appropriate mask holder (following machine prompt) (b) Exposure settings: i. Exposure time: 4 sec (33 % overexposure from default) ii. WEC type: cont iii. Expose type: hard iv. Al gap: 50 um v. HC wait: 5 secs (does not matter that much) (c) Put sample on chuck, and load into mask aligner (following machine prompt). You may read "loss of wafer vacuum" because the small sample is not covering all vacuum holes. Ignore this message. (d) Align the mask to the sample. Manually displace the sample on the chuck if the ma- chine goes out of range (this is why designing for chuck vacuum hole locations is 28 good). (e) Expose. Make sure the UV hits for the correct time. (f) Unload the sample (following machine prompt). 3. Development (Photo-develop hood) (a) Prepare a small beaker of AZMIF300 over cleanroom wipes. You want it high and large enough to be able to gently agitate the sample during development. Note: AZMIF300 contains TMAH, handle with caution and read MSDS. (b) Prepare a small (but larger than step a) beaker of DI water over cleanroom wipes. (c) Develop the sample by dipping it in the AZMIF300 beaker and gently agitating it in the solution for 1 min 15 sec (20 % overdevelop over standard recipe). (d) Transfer the sample to the DI water beaker to stop development, again gently moving it for 1 min. (e) Blow dry the sample with nitrogen (f) Hard bake at 110° C for 5 mins. (g) Inspect the exposed and developed resist with the Olympus microscope at low bright- ness. Note: other microscopes like the Keyence do not have UV filters and will burn your resist, even if developed. You should see windows such as in Fig. B.1. Note: Dispose of chemicals and clean up your station when you are done. **B.4** Etching Once the pattern is transferred onto the sample, it will stay in good condition on the order of days if not exposed to UV. If exposed to UV, it will degrade more quickly. To etch M2, we first etch the protective oxide, and then the M2 aluminum. Some critical notes: 29 - 1. Follow all Personal Protective Equipment (PPE) requirements, see acid hood training. - 2. BOE contains Hydrofluoric acid (HF), follow appropriate safety requirements. - 3. BOE etches glass and metal, **DO NOT** use glass beakers and metal tweezers. - 4. Aluminum Etch type A etches metal, **DO NOT** use metal tweezers. - 5. The PPE may limit mobility and visibility, practice handling tweezers and samples on dummy samples first. For instance, you do not want to accidentally scratch the resist off with your tweezers. #### 1. Etch prep (Acid Hood 1) - (a) Don the appropriate PPE (see acid hood training). - (b) Take out at least 4-5 cleanroom wipes and bring them to your station. Line 3 of them in the hood to receive 3 beakers. - (c) Install the hot plate, and set it to 50° C. - (d) In a small glass beaker, poor enough Aluminum Etchant Type A so that you will be able to gently stir the sample with it remaining covered. - (e) Put the Aluminum Etch onto the hot plate. - (f) Put DI water in a larger glass beaker. - (g) In a small plastic beaker, pour enough BOE 10:1 so that your sample will be covered. - (h) In another plastic beaker, put DI water (more than the BOE). - (i) Wait for the Aluminum Etch to reach 50°C, use the remote thermometer as needed. Note: Taking temperature readings is tricky, you need to reflect off the liquid: the glass beaker or the hot plate will give room temperature readings. - (j) You should have 4 beakers, two of acid (one on the hot plate), and two of DI water. #### 2. Oxide etch - (a) Using plastic tweezers, gently deposit the sample into the BOE beaker and leave for 5 mins. Note: we have established that 5 mins is not enough to etch all the way down to M1, but will overetch M2; see thin-film interference effects on Livingstone tests Fig. B.3 - (b) Rinse your tweezers at this point by dipping them in the DI water beaker and under flowing water. - (c) After 5 mins, take the sample out and gently lower it into the HF DI water for 1 min to stop the etch. You may rinse your tweezers at this point by dipping them in the DI water beaker and under flowing water. - (d) Blow dry the sample with nitrogen #### 3. Metal Etch - (a) Using plastic tweezers, lower the sample into the 50°C Aluminum Etch type A solution. - (b) Keep hold of it, and gently move it around in the solution for 8 min. Agitation and increased temperature helps with etch rate. Note: 8 mins is an overetch of M2 as evidenced by $> 10\mu m$ lateral etching of windows, but since the solution is not significantly selective to oxide and resist, this is only a problem if you want to avoid $10\mu m$ wide lateral etching from your defined resist windows. - (c) After 8 mins, take the sample out and gently lower it into the Al Etch DI water for 1 min to stop the etch. - (d) Blow dry the sample with nitrogen #### 4. Tantalum Nitride Etch (a) Thin film TaN is often used as a diffusion barrier and insulating layer between metal lines on chips [6]. Tantalum nitrides are also used for thin film resistors and silicon photonics [7]. - (b) Tantalum Etchants contain Hydrofluoric acid and will attack silicon oxides, titanium, nickel, aluminum, and chromium. - (c) Using plastic tweezers, lower sample into etchant, - (d) Follow time on etchant. - (e) Finish with rinse and dry. Figure B.3: Interferometric effects observed within metal layers on livingstone test. ## **B.5** Photoresist Strip Lastly, remove the photoresist by gently stirring the sample in acetone followed by IPA, then blow dry with nitrogen. ## **B.6** Results of Silicon Modulator Etch Fig. B.4 shows the successful removal of the M2 aluminum layer shorting out the Michelson-Morley Interferometric Modulator. The low-focus imaging shows the clear removal of the metal layer while the high-focus imaging shows the lack of damage to the silicon photonics below the etched error. The success of this "chip surgery" is proven by the current-voltage (IV) measurement of the modulator. The shorted modulator showed a linear resistive curve, while the post-etched modulator showed the expected diode response, Fig. B.5. This procedure was critical for the success of the silicon microwave photonic canceller; a special thanks to Simon Bilodeau for the development and execution of this process. Figure B.4: Etched M2 short in low (left) and high (right) focus highlighting the removal of the aluminum layer as well as the unaltered optical components below. Figure B.5: Measured resistive IV curve of modulator before etch (left) and measured diode curve of modulator after successful aluminum etch (right). *Note:* Before etching, the authors attempted to electrically open the modulator by passing a short pulse of high (2 Amp) current. This idea was neither effective nor well-thoughout; it did not work. The probes melted to the electrical pads before the electrical proprieties of the device changed. # **Bibliography** - [1] L. Ranno, P. Gupta, K. Gradkowski, R. Bernson, D. Weninger, S. Serna, A. M. Agarwal, L. C. Kimerling, J. Hu, and P. OBrien, "Integrated photonics packaging: Challenges and opportunities," *ACS Photonics*, vol. 9, no. 11, pp. 3467–3485, 2022. - [2] L. Zimmermann, G. B. Preve, T. Tekin, T. Rosin, and K. Landles, "Packaging and assembly for integrated photonics—a review of the epixpack photonics packaging platform," *IEEE Journal of Selected Topics in Quantum Electronics*, vol. 17, no. 3, pp. 645–651, 2010. - [3] W. Heinrich, M. Hossain, S. Sinha, F.-J. Schmückle, R. Doerner, V. Krozer, and N. Weimann, "Connecting chips with more than 100 ghz bandwidth," *IEEE Journal of Microwaves*, vol. 1, no. 1, pp. 364–373, 2021. - [4] A. Hassona, Z. S. He, V. Vassilev, C. Mariotti, S. E. Gunnarsson, F. Dielacher, and H. Zirath, "Demonstration of+ 100-ghz interconnects in ewlb packaging technology," *IEEE Transactions on Components, Packaging and Manufacturing Technology*, vol. 9, no. 7, pp. 1406–1414, 2019. - [5] T. Ferrier de Lima, "Neuromorphic computing with silicon photonics," *Princeton University*, 2022. - [6] I. P. Borovinskaya, "Tantalum nitride," *Concise Encyclopedia of Self-Propagating High- Temperature Synthesis*, pp. 370–371, 2017. [7] T. Akashi, "Fabrication of a tantalum-nitride thin-film resistor with a low-variability resistance," *IEEJ Transactions on Sensors and Micromachines*, vol. 125, no. 4, pp. 182–187, 2005.